时间过得飞快,同学们一路踩着大大小小的测试,转眼就走到了年底。这个阶段,如何提高数学的解题能力,恐怕是大多数同学的心病。如何打开你们的心结,解放你们的时间呢?今天,我就给同学们传授一点数学的复习方法,帮助你们提高我们的数学解题能力。请那些急待数学成绩提高的同学做好笔记吧。
数学在命题方面千变万化,知识点又非常容易综合穿插,所以,对那些不擅长整合知识、对数学概念缺乏理解的同学来讲,难免会感到数学很“难"。进入11月之后,玖久办公室接到的咨询电话陆续多起来,一些外地的家长都在帮助孩子寻找数学的复习方法和解题思维,希望能够提高孩子的数学学习能力,早日让孩子的数学成绩发生变化。汇总了一下同学和家长的咨询内容,基本上,问题都集中在这上面:“在数学学科上投入很大精力,很努力,但是到头来,只会做老师讲过的题。考试的时候,题型稍微一变,马上就答不上来,非常让人着急......”
其实,数学是一个简单的学科,因为答案是唯一的,问题又非常明确,比其他学科都容易掌握,分数也更容易提高。那些认为数学难、遇到新题没思路、做了大量习题,收效却不大的同学其实还是没有抓到数学的学习窍门。从大的方面讲,是学生不懂得什么是学习?从小的方面讲,是学生缺乏数学学习胃口,没有数学思路。学习是让我们发现一种内在的存在方式,思路是连接知识与问题之间的过程。如果你清楚了解这点,你会非常轻松,也会非常有方向。然后,你就会像阿基米德一样,发现这个世界。
首先,你要培养三项能力:
这三项能力对于数学成绩的高低起着关键性的作用,即:
1、理解知识,知道知识是从哪里来的,要用到哪里去;
2、善于分析,一道题目,能够快速找到可以利用的条件,对应前面的恰当知识;
3、精于思维管理,思路灵活并且善于主动式思考,可以快速精准的解决问题。
在形容这个解题能力的时候,曹老师举个很恰当的例子:一道题,给出我们一些条件,又给出我们一个目标。但是在目标和条件之间,还有一些空,需要我们去填补,怎样填补?用我们解决问题的思想,将自己理解的知识点填充在空白处。好,这道题你就做的很漂亮。其实学习和工作一样,跟我们应对生活中的任何问题都一样。我们可以回想一下,在我们遇到问题的时候,我们是不是都会率先抓住问题的要害(善抓重点的人,问题都处理的高效精准。相反,都一盘散沙)?抓住要害就等于抓住了目标,为了达成这个目标,我们首先数数当前我们拥有什么有利条件,接下来创造一些条件,完成目标。在数学题中,题目就是目标;有利条件就是已知条件;创造条件,就是利用解决问题的思维,找到的知识点。如果这样去看待问题,你还认为数学抽象吗?我常常对学生讲:学习不应该很辛苦,坚持、努力、鞠躬尽瘁、呕心沥血这些词语都带有痛苦的成份,不是最佳的学习方式。学习的光明境界是,了之一种内在的存在形式,找到究竟。当我们了之知识存在的形式之后,我们会与他们轻松相应,我们认识每个知识,他们也认识我们,这样的相处才很愉快。
庄老师认为通过一定的方法训练数学思想,简化数学知识点的理解,数学知识是非常容易融汇贯通的。在解题思想上,通过不断寻找“目标前提”也就是必要性思维,是能够做到以不变应万变,大道无形。庄肃钦老师送给全国学生的数学感言“数学,有着无穷的魅力!她具有音乐般的和谐、图画般的美丽、诗意般的境界;她赋予真理以生命,给我们思想增加光辉;她澄清智慧,涤尽有史以来的蒙昧和无知;平淡中见新奇,新奇中有艺术,这就是数学。我会和同学们一起,遨游数学之海洋、赏析数学之瑰丽、破解数学之谜题、享受数学之绝妙,在享受数学的道路上不断探索……”
其次,我们要有一套训练有素的数学复习标准步骤,下面就让我们循着通往数学满分的路,看看如何驾驭自己的思想走上数学高分的捷径。
一、解题思路的理解和来源
平时大家评论一个孩子“聪明”或者“不聪明”的依据是看这个孩子对某件事或很多事得反应以及有没有他自己的看法。如一个“聪明”的孩子,往往反应快、思路清楚,有自己的主见。那么我们认为“反应快、思路清楚、有主见”是聪明的前提。学习成绩好的同学,反应快、思路清楚、有主见就是他们的必备条件。
那么解题也如此,必须反应快、思路清楚、有主见。同一道题,不同的学生从不同的角度去理解,由不同的看法最终汇聚成正确的解题过程,这是解题的必然。无论是推导、还是硬性套用、凭借经验做题,都是思路的一种。有的同学由开始思路不清渐渐转变为清楚,有的同学根本没有思路,这就形成了做题的上的差距。
如果能教会给学生,在处理数学问题上,第一时间最短的思考路径,并且清晰无比,这样,每个学生都是“聪明的孩子”,在做题上就能攻无不克战无不胜。
解题思路的来源就是对题的看法,也就是第一出发点在哪。
二、如何在短期内训练解题能力
数学解题思想其实只要掌握一种即可,即必要性思维。这是解答数学试题的万用法门,也是最直接、最快捷的答题思想。什么是必要性思维?必要性思维就是通过所求结论或者某一限定条件寻求前提的思想。几乎所有数学命题都可以用这一思想进行破解。这里我用视频来举两个简单的例子,说明数学必要性思维是如何应用的。
纵观近几年高考数学试题,可以看出试题加强了对知识点灵活应用的考察。这就对考生的思维能力要求大大加强。如何才能提升思维能力,很多考生便依靠题海战术,寄希望多做题来应对多变的考题,然而凭借题海战术的功底仍然难以获得科学的思维方式,以至收效甚微。最主要的原因就是解题思路随意造成的,并非所谓“不够用功”等原因。由于思维能力的原因,考生在解答高考题时形成一定的障碍。主要表现在两个方面,一是无法找到解题的切入点,二是虽然找到解题的突破口,但做这做着就走不下去了。如何解决这两大障碍呢?本章将介绍行之有效的方法,使考生获得有益的启示。
三.寻找解题途径的基本方法——从求解(证)入手
遇到有一定难度的考题我们会发现出题者设置了种种障碍。从已知出发,岔路众多,顺推下去越做越复杂,难得到答案,如果从问题入手,寻找要想获得所求,必须要做什么,找到“需知”后,将“需知”作为新的问题,直到与“已知“所能获得的“可知”相沟通,将问题解决。事实上,在不等式证明中采用的“分析法”就是这种思维的充分体现,我们将这种思维称为“逆向思维”——目标前提性思维。
四.完成解题过程的关键——数学式子变形
解答高考数学试题遇到的第二障碍就是数学式子变形。一道数学综合题,要想完成从已知到结论的过程,必须经过大量的数学式子变形,而这些变形仅靠大量的做题过程是无法真正完全掌握的,很多考生都有这样的经历,在解一道复杂的考题时,做不下去了,而回过头来再看一看答案,才恍然大悟,解法这么简单,后悔莫及,埋怨自己怎么糊涂到没有把式子再这么变一下呢?
其实数学解题的每一步推理和运算,实质都是转换(变形).但是,转换(变形)的目的是更好更快的解题,所以变形的方向必定是化繁为简,化抽象为具体,化未知为已知,也就是创造条件向有利于解题的方向转化.还必须注意的是,一切转换必须是等价的,否则解答将出现错误。解决数学问题实际上就是在题目的已知条件和待求结论中架起联系的桥梁,也就是在分析题目中已知与待求之间差异的基础上,化归和消除这些差异。寻找差异是变形依赖的原则,变形中一些规律性的东西需要总结。在后面的几章中我们列举的一些思维定势,就是在数学思想指导下总结出来的。在解答高考题中时刻都在进行数学变形由复杂到简单,这也就是转化,数学式子变形的思维方式:时刻关注所求与已知的差异。
五、夯实基础----回归课本
1、揭示规律----掌握解题方法
高考试题再难也逃不了课本揭示的思维方法及规律。我们说回归课本,不是简单的梳理知识点。课本中定理,公式推证的过程就蕴含着重要的方法,而很多考生没有充分暴露思维过程,没有发觉其内在思维的规律就去解题,而希望通过题海战术去“悟”出某些道理,结果是题海没少泡,却总也不见成效,最终只能留在理解的肤浅,仅会机械的模仿,思维水平低的地方。因此我们要侧重基本概念,基本理论的剖析,达到以不变应万变。
例如:课本在讲绝对值和不等式时,根据|a-b|≤|a|+|b|推出|a-b|≤|a-c|+|b-c|,这里运用了插值法|a-b|=|(a-c)-(b-c)|≤|a-c|+|b-c|这一思维方法,我们要弄清之所以这样想,之所以得到这个解法的全部酝酿过程。
2、融会贯通---构建网络
在课本函数这章里,有很多重要结论,许多学生由于理解不深入,只靠死记硬背,最后造成记忆不牢,考试时失分。在课本函数这章里,有很多重要结论,许多学生由于理解不深入,只靠死记硬背,最后造成记忆不牢,考试时失分。
例如:若f(x+a)=f(b-x),则f(x)关于(a+b)/2对称。如何理解?我们令x1=a+x,x2=b-x,则f(x1)=f(x2),x1+x2=a+b,=常数,即两自变量之和是定值,它们对应的函数值相等,这样就理解了对称的本质。结合解析几何中的中点坐标的横坐标为定值,或用特殊函数,二次函数的图像,记忆这个结论就很简单了,只要x1+x2=a+b,=常数;f(x1)=f(x2),它可以写成许多形式:如f(x)=f(a+b-x).同样关于点对称,则f(x1)+f(x2)=b,x1+x2=a(中点坐标横纵座标都为定值),关于(a/2,b/2)对称,再如,若f(x)=f(2a-x),f(x)=(2b-x),则f(x)的周期为T=2|a-b|。如何理解记忆这个结论,我们类比三角函数f(x)=sinx,从正弦函数图形中我们可知x=π/2,x=π3/2为两个对称轴,2|3/2π-π/2|=2π,而得周期为2π,这样我们就很容易记住这一结论,即使在考场上,思维断路,只要把图一画,就可写出这一结论。这就是抽象到具体与数形结合的思想的体现。
思想提炼总结在复习过程中起着关键作用。类似的结论f(x)关于点A(a,0)及B(b,0)对称,则f(x)周期T=2|b-a|,若f(x)关于点A(a,0)及x=b对称,则f(x)周期T=4|b-a|,
这样我们就在函数这章做到由厚到薄,无需死记什么内容了,同时我们还要学会这些结论的逆用。例:两对称轴x=a,x=b当b=2a(b>a)则为偶函数.同样以对称点B(B,0),对称轴X=a,b=2a是为奇函数.
3、加强理解----提升能力
复习要真正的回到重视基础的轨道上来。没有基础谈不到不到能力。这里的基础不是指机械重复的训练,而是指要搞清基本原理,基本方法,体验知识形成过程以及对知识本质意义的理解与感悟。只有深刻理解概念,才能抓住问题本质,构建知识网络。
4、思维模式化----解题步骤固定化
解答数学试题有一定的规律可循,解题操作要有明确的思路和目标,要做到思维模式化。所谓模式化也就是解题步骤固定化,一般思维过程分为以下步骤:
(1),审题
审题的关键是,首先弄清要求(证)的是什么?已知条件是什么?结论是什么?条件的表达方式是否能转换(数形转换,符号与图形的转换,文字表达转为数学表达等),所给图形和式子有什么特点?能否用一个图形(几何的、函数的或示意的)或数学式子(对文字题)将问题表达出来?有什么隐含条件?由已知条件能推得哪些可知事项和条件?要求未知结论,必须做什么?需要知道哪些条件(需知)?
(2),明确解题目标.关注已知与所求的差距,进行数学式子变形(转化),在需知与可知间架桥(缺什么补什么)
A.能否将题中复杂的式子化简?
B.能否对条件进行划分,将大问题化为几个小问题?
C.能否进行变量替换(换元)、恒等变换,将问题的形式变得较为明显一些?
D.能否代数式子几何变换(数形结合)?利用几何方法来解代数问题?或利用代数(解析)方法来解几何问题?数学语言能否转换?(向量表达转为坐标表达等)
E.最终目的:将未知转化为已知。
(3),求解要求解答清楚,简洁,正确,推理严密,运算准确,不跳步骤;表达规范,步骤完整
以上步骤可归纳总结为:目标分析,条件分析,差异分析,结构分析,逆向思维,减元,直观,特殊转化,主元转化,换元转化。
最后,就是在平时学习中按照上述标准去做,不用太长时间,一个月,你的成绩就会发生变化了。记住,数学解题36技,大家要花时间去练习一下......祝愿大家在期末考试的时候,成绩有一个大幅度的提高。
来源:中国教育在线